2020年4月16日木曜日

モデルとマトリクスについて

コロナウィルスの影響で、ブログどころではないのですが、何とか投稿してみます。

この日常生活へのストレスは、東日本大震災時の計画停電を思い出させます。

コロナウィルスのような現象は、いわゆるブラックスワンと呼ばれる現象でして、個人的には、東日本大震災が自分が経験する最後のブラックスワンと思っていましたが、10年も経たずにこのような状況となりました。

そうすると、今後もブラックスワン発生前提の人生設計が必要と思います。ちなみに、私はブラックスワンという本を1ページも読んでおりません・・・(とても難解という噂ですので・・)。

さて、以前お知らせしましたように、パテント誌の3月号に「テキストマイニングを使用したブランドQFDの作成」が掲載されました。

5月中旬には、弁理士会のホームページで無料公開される予定ですので、公開されましたらリンクを張ります。

それで、すでに読んでいただいた方にはお分かりと思いますが、実のところ、ブランドQFDは不要な内容となっております。

論文では、最終的なアウトプットとしてコンテクストを作成しておりますが、これは、類似度行列から直接作成できますので、この論文のように、ブランドQFDの作成をわざわざ介する必要はありません。

情報のまとめ方としては、下記のごとくマトリクス型(QFD等)とモデル型(コンテクスト等)があるのではないか、と途中で気が付きましたが、結局論文作成時の混乱がそのまま残った形となります。


特許情報分析ではマトリクス型が多く用いられますが、モデル型の方が各要素のつながりが目で見てわかりやすいため、こちらの方がよいとも思います。

このあたりの使い分けを意識的にしているのが「デザイン科学概論」という本です。この本では、分析にはマトリクスを用い、発想にはモデルを用いております。

先日公開しましたワーキングペーパー(https://www.j-mac.or.jp/wp/dtl.php?wp_id=89)の方でも、無意識に、技術分析はモデルを用いた検討となっており、知財分析はマトリクスを用いた分析となっております。

ということで、今後このあたりの役割分担を考えるのも面白いと考えております。

【PR】“AI、生成AI”による知財業務の効率化、スピード化のセミナーについて(9/27開催)

掲題の件、セミナーの1/4を担当することになりました。私の担当分は、「【第2部】生成AIで革新する特許データ分析」です。URLは以下となります。 AI 生成AI 特許調査 分析 翻訳 技術情報協会はセミナー・出版・通信教育を通じて企業の最前線に立つ研究者、技術者をサポートし社会に...