test
2023年9月14日木曜日
2023年7月8日土曜日
知財デザインの現在地
私はこの10年、知財デザイン手法を考案しようと、いろいろ研究しておりますが、まだアウトプットとしては出せておりません。
方法論としては、人間に頼るのではなく、特許データをベースに様々なツールを駆使して、分析を進めるようにしたいと考えております。
これは、従来の方法論は人間に頼る部分が多すぎ、実現が難しいのではないかという課題意識によります。
また、方法論については、できるだけシンプルにしたいと考えてます。これは複雑なものは実現不能と考えるからです。
今のところのまとめは以下の表となります。
量的分析については、いろいろな方がやっているのでそれをマネします。
質的分析については、特許分析の世界では認知度が低く、これの理解をしてもらうことが一番の課題となります。
ただし、生成AIという強力な武器が登場しましたので、こちらも実現が近付いていると考えます。生成AIはトランスフォーマーというアーキテクチャーにより、文脈を維持しますので、従来AIにはできない処理が可能です。
話は変わりますが、前回のパネルで、生成AIの活用について議論しました。感想としては、生成AIの活用場面は意外と狭いのではないか、ということになります。
生成AIの出力は、客観性が低く、量的分析(IPランドスケープなど)には使いにくいということのようです。したがって、量的分析には、客観性の高い従来AIの方が、使い出がある、との感想を持ちました。
したがって、量的分析をメインに行う方からは、生成AIに対する失望みたいなものが、近いうちに、聞こえてくることになる気がします。このあたりは、用途に合わせた使い分けが重要となる気がします。
ということで、研究を進めようと思います。
書籍の改定予定について
昨年kindle本を2冊出しましたが、改訂作業を行いたいと思います。
テキストマイニングでできる特許データ分析入門(kindle版)につきましては、
・トピックモデルの使い方の追加
・2022年の知財学会の内容の追加
・ChatGPTの活用の追加(できれば)
となります。改定予定は、年内を目標にしたいと思います。
Excelでできる特許データ分析入門(kindle版)につきましては
・2023年知財学会発表予定の内容の追加
・ChatGPTの活用の追加
となります。改定予定は、来年夏を目標にしたいと思います。
また、新作として
「Pythonでできる特許データ分析入門」を来年春頃に上市したいと思います。
内容は、Pythonで簡単な特許マップを書くという基本的な内容になります。
ChatGPT関連についても書きたいのですが、日々新しいことが起きており、言及した瞬間古くなるという状況となっています。
したがって、状況が落ち着いたらまとめたいと思います(数年後くらい?)
2023年6月22日木曜日
MPUF(Microsoft Project Users Forum) R&Dイノベーション研究会について
MPUF(Microsoft Project Users Forum) R&Dイノベーション研究会 2023年 年次大会というものにパネリストとして参加することになりました。
以下のURLから誰でも無料で参加できますので、お時間のあるかたは是非参加をご検討ください。
MPUF (Microsoft Project Users Forum)
私が参加するパネルのテーマは、「ベストアイデアを速く生み、 アイデアを早くなるべく短い所要時間で保護し、なるべく短い所要時間で他者特許クリアランスをするには」だそうです。
パネラーをするのは初めてですので、何を話したらよいのか、よくわかりませんが、このテーマについて事前に考えをまとめたいと思います。
まず、このテーマを見た第一印象は、「長くて欲張り」ということです。何か、「早く処理する」というニーズがあるのでしょうか?もちろん、早いことには越したことはありませんが。
テーマを分解しますと
1.ベストアイデアを早く生む
2.アイデアを早く権利化する
3.アイデアを?早くクリアランスする
の3つとなると思います。それでは、1番目から検討します。
1.ベストアイデアを早く生む
これですが、いきなり難題です。
アイデアというのは、仮説形成(アブダクション)により、生成されるものですが、アブダクションは誤りを含むことが運命づけられておりますので、直接的にベストアイデアを生むことはできません。
通常は、
①アイデアを大量に生成する
②大量に生成されたアイデアを検証する
③残ったアイデアがベストアイデアとなる
という、いわゆるデザイン思考のような過程を通じて、ベストアイデアというものが確認されることになります。
そうしますと、ベストアイデアを早く生むには、①~③の過程を高速で実行することになると思います。
おそらく人手で実行すると高速化は困難となると思いますので、ここは流行のいわゆるAIの活用が考えられると思います。
AIを活用したアイデア生成の事例として、以前以下の事例をつくりましたので、これらを使おうかと思います。
AIに頼り切って発明してみた
https://qiita.com/ip_design/items/c23f40a97367c58c7acf
再度AIに頼って発明してみる(あわよくばクレームも書いてもらう)
https://qiita.com/ip_design/items/c2291ffbaca4d01a3c26
ただし、アイデアの検証まではできておりません。これは、実際にプロトタイプを作っての検証が必要ですので、AIを使っての高速化は難しいと思います。
一部、マテリアルインフォマティクスの分野で、機械学習を使った検証が実用化されているようですので、技術分野によっては、これもAI化できるとは思います。
2.アイデアを早く権利化する
これは、
①明細書を早く作る
②早期審査を利用して早期権利化を図る
というような話となると思います。②の早期審査の利用については、現在もやられていることですので、①の明細書を早く作るという話が中心になると思います。
先日参加した研修では、ドイツの弁理士が、ChatGPTを使用してアイデア発想から特許出願まで30分で行ったことを報告しておりました。
ということで、ChatGPTで明細書を書けば、早く出願をできることになります。これに関しては、ChatGPTの利用ということで話は終わると思います。
3.アイデアを?早くクリアランスする
特許クリアランスとは、自社の製品が他者の保有する特許権を侵害していないかどうかを確認することだそうです。
進め方としては2つの方針があると思います。
①完成したアイデア製品を事後的にクリアランスチェックをする。
これは、一般的な考えで、アイデア製品を言語化し、特許権検索を行い、近似する特許権の請求項と言語化されたアイデア製品を対比して、侵害確認を行うことになります。
特許検索には、従来AIを使用できるかもしれません(ただし、検索漏れが怖いですが・・・)
②アイデア発想の段階で、クリアランスも実施してしまう。
これは、アイデア発想の段階で、先んじて、侵害しそうなアイデアを除去してしまう、という考えです。ではどうやって実現するか言えば、アイデア発想の段階で、特許データを活用することが考えられます。
ChatGPTにアイデア発想をさせますと、このような処理はできませんので、アイデア発想手順を考える必要がありますが、具体的には、今のところ思いついておりません。
例えば、ChatGPTのような「生成AI」にアイデアを発想させ、別に「検証AI」というものを作り、「生成AI」と「検証AI」との間で勝手にやり取りさせて、問題のないアイデアのみ出力させることが考えられますが、まあ、誰か実現できるでしょうか?
ということで、もう少し考えをまとめたいと思います。
【PR】“AI、生成AI”による知財業務の効率化、スピード化のセミナーについて(9/27開催)
掲題の件、セミナーの1/4を担当することになりました。私の担当分は、「【第2部】生成AIで革新する特許データ分析」です。URLは以下となります。 AI 生成AI 特許調査 分析 翻訳 技術情報協会はセミナー・出版・通信教育を通じて企業の最前線に立つ研究者、技術者をサポートし社会に...
-
ご無沙汰しております。 最近投稿をさぼっておりますが、これはこのHPのアクセス数がなさ過ぎて、モチベーションが上がらないからです。 1つの記事のアクセス数が5くらいしかありません(1日ではなく、総アクセスで)ので、さすがにひどいと言わざるをえません。 このような状態になったのは、...
-
https://note.com/ip_design へしばらく移転します。
-
東京オリンピックのメインスタジアムの建設費用が高すぎるとして問題となっています。 今の日本であれば3000億円程度であれば、出せない額ではありませんが、世論的には批判の的となっています。 その理由はなぜかといえば、あのヌメッとしたデザインに3000億円の価値はないと日本国...