2020年5月3日日曜日

ニーズ分析について

前に宣言しましたように、学会用のデータづくりをしております。しかし、休んで免疫を維持することも重要ですので、適当にやっています。

今は、ニーズのコードをどうするか考えております。

今回は(今回も?)、あまり自分の頭で考えず、ソフトウェアの力を借りて、できるだけ機械的にデータを処理してゆこうと思います。

手順としては、レビュー情報収集→形態素解析→クラスタ分析→コードを考える、という手順となります。

レビュー情報につきましては、前回はP&Gとネピアをやりましたので、今回はユニ・チャームと花王のレビューを合わせて1000件程度収集しました。

これをKHcoderに取り込んで、クラスタ分析をしてみました。


クラスタの数は10くらいが適当かと思われるため、クラスタ数を少し多めに12にして、各クラスタに対応する特徴語を抽出したのが以下の図となります。


この特徴語からニーズを考えるのですが・・・、かなり推測しませんとわかりません。

ひとまず、「持ち運びが楽」、「着心地がよい」、「サイズがよい」、「交換しやすい」、「子供に似合う」があるかということになるとしました。

今回ニーズは深堀しませんので、このくらいでよしとして、次の作業に移ろうと思います。

【PR】“AI、生成AI”による知財業務の効率化、スピード化のセミナーについて(9/27開催)

掲題の件、セミナーの1/4を担当することになりました。私の担当分は、「【第2部】生成AIで革新する特許データ分析」です。URLは以下となります。 AI 生成AI 特許調査 分析 翻訳 技術情報協会はセミナー・出版・通信教育を通じて企業の最前線に立つ研究者、技術者をサポートし社会に...